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ABSTRACT 
Main goals of analog circuit sizing optimization are to maximize circuits’ performances within a reasonable 

computing time. This allows designers reducing the so-called time to market. Recently, it has been proven that 

the efficient global optimization (EGO) technique allows constructing accurate models of circuits (not only) 

performances. Evaluation of such analytical models is very fast when compared to the well-known inloop 

techniques. In this work we focus on adopting such EGO technique for the optimal design of ‘complex’ analog 

CMOS circuits. The case of an operational transconductance amplifier sizing problems is considered. Comparison 

with two metaheuristic-based in loop sizing techniques (PSO and BSA) is provided to show efficiency and 

rapidity of the proposed EGO-based approach. 

 

KEYWORDS: EGO algorithm, Expected improvement, Meta-modeling, Kriging, metaheuristics, DE, PSO, 

BSA,CMOS, OTA. 

1. INTRODUCTION 
Analog circuit design is a complex and delicate task[1-3]. Therefore, performing optimization is indispensable 

to assure high performances. Two optimization approaches are proposed in the literature [4,5]: the equation-

based approach and the in-loop one. The latter is more accurate than the former technique. Nevertheless, its 

main drawback is its slowness. Contrariwise, the equation-based approach is characterized by its rapidity. 

Surrogate modeling bid an excellent solution to gather benefits of both aforementioned techniques [6-8]. 

 

Nowadays, surrogate models are widely used to replace expensive simulations [9,10]. These modeling 

techniques are able to approximate very complex non-linear functions by a simple and an accurate model. The 

specialized literature offers a very large spectrum of surrogate model techniques [6-12]. Among them, we are 

interested in the Kriging model. As compared to the other modeling techniques, the Kriging approach offers 

several advantages, such as the simplicity of its implementation, the accuracy of constructing models, and the 

fact that it is able to provide an estimation of the model’s error. Furthermore, these models can be easily 

integrated within optimization routines. 

 

Efficient global optimization (EGO) algorithm is one of the most widely used surrogate-based optimization 

algorithms [13]. EGO starts by building a kriging model based on a few initial samples. Then, according to the 

expected improvement (EI) criterion[13]precision of the model under construction is improved by adding 

supplementary samples. The EI criterion is considered for this purpose [14].  

 

In this work, we focus on adapting EI- based EGO for the enhancement of analog circuit performances. It is to 

be stated that a first draft of this idea has already been proposed in [15] where the application of EI has been 

validated on an OTA [16]. In this work, we consider the maximization of three main performances of an OTA, 

namely, its voltage gain, its common mode rejection ratio (CMRR) and its positive power-supply rejection ratio 

(PSRR).Effectiveness, regarding accuracy and rapidity, of the proposed approach is stressed via a comparison 

with two metaheuristic-based in loop optimization. Two well-known rapid met heuristics are considered:  
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particle swarm optimization (PSO) and backtracking search optimization (BSA).Furthermore, the efficiency of 

our approach is showcased via solving a complex analog CMOS circuit with a relatively large number of 

variables. 

 

The rest of this paper is organized as follows. In Section II and III, we give a brief description of the EGO 

algorithm and of both considered metaheuristic-based in loop optimization approaches. In Section IV, we 

present the application of three algorithms for the optimal design of the considered analog circuit. Finally, the 

last section highlights some concluding remarks. 

 

2. OVERVIEW OF THE EFFICIENT GLOBAL OPTIMIZATION ALGORITHM 
EGO has been proposed by Donald R. Jones in 1998 [13]. The algorithm adapts a Kriging model to an initial 

sampling design by evaluating an objective function. At each iteration, the point with the maximum expected 

improvement (EI) value is selected and evaluated to update the Kriging model. Each time, a set of samples is 

added to the initial design in order to decrease the prediction error. The optimization process of the EI function 

is based on the Differential Evolution (DE) algorithm [17].  

 

The pseudocode of the EGO algorithm can be presented as follows, see Algorithm 1: 

 

Algorithm 1 The EGO pseudocode 

Create an initial design: X = [x1; : : : ; xn] 

Evaluate function at X and set Y = f(X). 

The best result (xmin, ymin) 

While the stop criterion is not met do 

Fit a kriging model on the data points (X ; Y). 

xn+1← maximize EI (max E I (x)) and add xn+1 to X.  

yn+1 ← f(xn+1) and add yn+1 to Y.   

ymin ← min(Y) (Compute the minimum ymin) 

xmin ← x ∈X: y(x) = ymin 

Re-estimate the parameters and update the Kriging model. 

end while 
 

 

The core of the EGO algorithm is based on the use of three routines: The first, i.e. uses the Kriging technique for 

constructing the model. The second makes appeal to the Expected improvement criterion to improve accuracy of 

the model under construction. The third routine is a metaheuriticthat maximizes EI. The differential evolution 

(DE) metaheuristic is used. Respective details are given in the following sub-sections. 

 

1. Krigingmetamodeling technique 

The Kriging is one of the most popular surrogate modeling technique used in approximating computationally 

expensive functions and generating accurate models of complex and non-linear systems [11]. Kriging approach 

was proposed by Daniel G.Krige to predict the spatial patterns for gold mines[18].Later, the Kriging model has 

been used to improve the approximation of computer experiments[19]. 

The approximation function of the Kriging model can be formulated as follows: 

( ) ( )y x x    (1) 

  

where the mean of the Gaussian process is μ, the error term ε(x)is normally distributed with mean zero and 

variance σ². The error term between two points x(i)and x(j) are not dependent, their correlation is defined by 

parameters Pkand θk: 
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where d is the dimension of the design values, this distance is measured by parameters Pkand θk.dis small, 

hencea large correlation, and large distance means a small correlation. Then, the best linear predictor and the 

mean squared error of the predictor can be derived in form: 

1ˆ ˆ ˆ( ) ( 1 )Ty x r R y     (3) 

and  

 
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 (4) 

where𝜇̂and 𝜎̂2are estimations of  μand σ²derived by maximizing the likelihood of the observed samples. 

with 
     ,
i j

ijR corr x x  
 

; ( )( ), ( )i

ir corr x x    
  and  (1) (2) ( ), , , ny y y y  is the vector of the n 

observed function value. 

 

2. The expected improvement criterion (EI) 

As it is aforementioned, the Kriging model can provide both the estimation and the uncertainty of that prediction. 

Availability of the uncertainty makes the Kriging model very suitable to provide the efficient infill sampling 

criteria also called the expected improvement (EI).  

 

EI expression can be formulated as given by equation (5). 

   
 

 
 minmin
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ˆˆ( )
ˆ . .
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 (5) 

where fmin is the current best observed value, 𝑦̂(𝑥)is the predictor. ϕ is the standard normal density and Φ is the 

distribution function. s(x) is the square root of the Kriging prediction variance. More details can be found in [13]. 

Actually, EI balances between seeking promising areas of the design space and the uncertainty in the model.  

According to the equation (5), the first term is large when surrogate prediction decreases, which will lead the 

search to the local exploitation around the best-observed point. The second term of the expected improvement 

criterion increases when the variance s(x) is large. This condition will insure a global exploration of the design 

space.  

 

3. Differential evolution (DE) 

The DE algorithm was used within the EGO algorithm in the interest to optimize the EI function performance. 

Differential evolution is a stochastic metaheuristic algorithm. It is inspired from genetic algorithms(GA) and the 

evolutionary strategies (ES) combined with geometric search techniques. GA allows changing the structure of 

the individuals using the mutation and crossover, whereas ES realizes the self-adaptation by a geometric 

manipulation of the individuals [17]. 

 

4. METAHEURISTICS BASED IN-LOOP OPTIMIZATION 
Inloop based optimization offers a wide spectrum of advantages when compared to the equation-based approach 

[4,5]. It has already been widely used in analog circuit design. In brief, this technique uses a SPICE-like simulator 

for evaluating the circuit performances and its intrinsic/extrinsic constraints within an optimization routine, thus 

avoiding the use of inaccurate equivalent (linearized) circuits’ models. In that process, a metaheuristic is used to 

guide simulator to the optimal values. 

 

Metaheuristics are easy to be implemented and adapted to different problems and they are relatively more rapid 

and less complex when compared to the conventional mathematical optimization techniques [20], particularly, 

population based ones. 

 

In our work a particular interest is accorded to two famous techniques: The Backtracking Search Optimization 

(BSA) [21-22] and the Particle Swarm Optimization (PSO) [23]. This argued by the fact that both techniques are 

very rapid and well suited to be implemented within an inloop-based sizing technique. 
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The flowchart of the in loop optimization approach is presented in Figure 1. 

 

Sopt Criteria is met?

No

Yes

Initialize Random Population  

Start

Evaluate Initial Population via 

Hspice Simulator

PSO/BSA Routines

Generate the Netlist

Update current 

variables 

Return the 

corresponding value

 Evaluate the 

performance

Evaluate Population via 

Hspice Simulator

 Constraints are 

verified ?

Update Population Optimal Performance

 
Figure 1. Flowchart of the Metaheuristic algorithms based in-loop optimization 

 

1. Backtracking Search Optimization 

The Backtracking Search Algorithm (BSA) is a population-based iterative evolutionary algorithm (EA).Main 

feature of BSA consists of the single control parameter. It has better convergence behavior[21] when compared 

to other swarm intelligence -based optimization techniques. The flow of the BSA algorithm can be explained by 

dividing its functions into five processes as is done in other EAs: initialization, selection-I, mutation, crossover, 

and selection-II. More details are presented in the following references[21-22]. 

 

2. Particle Swarm Optimization (PSO) 

The Particle Swarm Optimization (PSO) approach has been proposed in 1995 by Kennedy and Eberhart [24]. 

This approach is inspired from the metaphor of social interaction observed among insects and animals. The kind  
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of social interaction modeled within a PSO is used to guide a population of individuals (particles) moving 

toward the most promising area of the search space. We refer the reader to [23] for further details regarding 

PSO. 

 

3. APPLICATION OF EGO TO THE OPTIMAL DESIGN OF AN OTA 
In this section, we present the application of EGO to optimize performances of a CMOS OTA [16]. The 

considered performances are: the voltage gain, the transition frequency, the common mode rejection ratio 

(CMRR) and the positive power-supply rejection ratio (PSRR). 

 

The OTA under consideration is shown in Figure 2. This circuit encompasses a differential stage, formed by 

NMOS transistors (M9-M10). Transistors M11 and M12 supply the DC bias voltage to the transistors (M1-M2) and 

(M7, M8), respectively. Transistors (M13, M15) and (M14, M16) ensure the differential pair current bias [16]. 

 

The model’s variables are the channels widths WN, WP and the channel lengths LN, LP of the NMOS and PMOS 

transistors, respectively. All transistors are constrained to operate in the saturation mode; AMS 0.35µm 

technology has been used. (Vdd/Vss=±1.8V, Ibias1=60μA, Ibias2=90μA). 

M8M7

M3 M4 M12

M11

M5 M6

Vdd

Vss

M13

M2M1

M9
M10

M15

M14M16

Ibias2

Ibias1

V0-V0+

Vin
-Vin

+

 
Figure 2. A CMOS operational transconductance amplifier 

 

In the following we give results and respective comparisons upon the application of the proposed EGO-based 

technique to an eight-variable-OTA-circuit, as well as obtained results via both metaheuristic-based inloop 

approaches. Two study cases are considered: a population size of 50 individuals and a 50-iteration stopping 

criterion, and a 100-population and 100 iterations as a stopping criterion. Channel widths and channel lengths of 

the circuit’s MOS transistors are the circuits’ variables. Corresponding variation range for Wi (i∈{1, 2,3,4}) is 

[20µm,90µm] and for Li (i∈{1, 2,3,4}) is [0.35µm,1.2µm]. Table I depicts the considered variables. 

 
TABLE I. TRANSISTORS’ VARIABLES OF THE OTA  

Transistors Variables 

M1, M2, M11 W1,L7 

M3, M4 W2,L8 

M12 1.5 W2 

M5, M6, M7, M8, M13, 

M14, M15, M16 

W3,L5 

M10, M9 W4,L6 
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Tables II, IV, and VI summarize the optimization results and give the computing time of the considered 

performances, respectively. Tables III, V, and VII present the corresponding parameters’ optimal values, 

respectively. Corresponding simulation results are presented in Figures 3-5. 

 

 

TABLE II. COMPARATIVE RESULTS OF THE VOLTAGE GAIN 

 

Optimization 

result 

(dB) 

 

Simulation result 

H-SPICE 

(dB) 

 

Relative Error  

(%) 

 

Execution time 

50 samples and 50 iterations 

  EGO 87.847 87.801 0.05 58 sec. 

PSO-based in-loop 89.677 
 

33 min. 25 sec. 

BSA-based in-loop 87.960 33 min. 51 sec. 

100 samples and 100 iterations 

EGO 88.971 88.981 0.01 3 min. 10 sec. 

PSO-based in-loop 89.677 
 

2 hr. 10 min. 30 sec. 

BSA-based in-loop 89.587 2 hr. 33 sec. 

TABLE III.  OPTIMAL VARIABLE VALUES  OF THE VOLTAGE GAIN 

 

Parameters Values 

(µm) 

 

 

PSO-based in-loop 

 

BSA-based in-loop 

 

EGO 

50 samples and 50 iterations 

W1 51.69 80.66 22.02 

W2 90.00 20.00 76.94 

W3 90.00 62.66 89.79 

W4 90.00 60.83 81.45 

L1 1.20 1.06 0.99 

L2 1.01 1.20 1.16 

L3 1.20 0.86 1.20 

L4 1.20 0.35 1.09 

100 samples and 100 iterations 

W1 50.14 90.00 43.15 

W2 90.00 33.74 89.00 

W3 90.00 90.00 77.96 

W4 90.00 20.00 84.65 

L1 1.20 0. 84 1.19 

L2 1.02 1.20 0.95 

L3 1.20 1.20 1.19 

L4 1.20 0.35 1.11 
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Figure 3. Hspice simulation of the OTA: Voltage Gain 

 
TABLE IV. COMPARATIVE RESULTS OF THE COMMON MODE REJECTION RATIO 

 

Optimization 

result 

(dB) 

 

Simulation result 

H-SPICE 

(dB) 

 

Relative Error  

(%) 

 

Execution time 

50 samples and 50 iterations 

  EGO 98.729 99.056 0.3 1 min. 6 sec. 

PSO-based in-

loop 
102.180 

 

1 hr. 46 min. 24 sec. 

BSA-based in-

loop 
99.287 1 hr. 41 min. 

100 samples and 100 iterations 

EGO 100.157 99.627 0.5   3 min. 

PSO-based in-

loop 
102.190 

 

6 hr. 47 min. 22 sec. 

BSA-based in-

loop 
108.400 6 hr. 37 min. 44 sec. 

 
TABLE V. OPTIMAL VARIABLE VALUES OF THE COMMON MODE REJECTION RATIO  

Parameters Values 

(µm) 

 

PSO-based in-loop 

(µm) 
BSA-based in-loop 

(µm) 
EGO 

(µm) 

50 samples and 50 iterations 

W1 20.00     65.39 88.34 

W2 20.00 20.00 22.30 

W3 89.87 90.00 86.11 

W4 90.00 90.00 85.49 

L1 1.20 1.04 1.10 

L2 0.96 1.01 1.03 

L3 0.35 0.35 0.35 

L4 0.35 0.51 1.05 

100 samples and 100 iterations 

W1 20.00 20.00 75.06 

W2 20.00 90.00 20.00 

W3 90.00 42.57 87.72 
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W4 90.00 43.74 90.00 

L1 1.20 0.67 1.14 

L2 0.97 0.38 0.94 

L3 0.35 0.42 0.35 

L4 0.35 0.35 0.91 
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Figure 4. Hspice simulation of the OTA : Common mode rejection ratio 

 
TABLE VI. COMPARATIVE RESULTS OF THE POWER-SUPPLY REJECTION RATIO 

 

Optimization 

result 

(dB) 

 

Simulation result 

H-SPICE 

(dB) 

 

Relative Error 

(%) 

 

Execution time 

50 samples and 50 iterations 

  EGO 80.831 80.542 0.3 1 min. 3 sec. 

PSO-based in-

loop 
81.377 

 

1 hr. 47 min. 2 sec. 

BSA-based in-

loop 
80.376 1 hr. 46 min. 20 sec. 

100 samples and 100 iterations 

EGO 81.412 80.744 0.8  3 min. 18 sec.  

PSO-based in-

loop 
81.377 

 

7 hr. 

BSA-based in-

loop 
81.239  6 hr. 46 min. 33 sec. 

 
TABLE VI. OPTIMAL VARIABLE VALUES OF THE POWER-SUPPLY REJECTION RATIO 

Parameters Values 

(µm) 

 

PSO-based in-loop 

(µm) 
BSA-based in-loop 

(µm) 
EGO 

(µm) 

50 samples and 50 iterations 

W1 90.00 48.65 35.88 

W2 90.00 90.00 90.00 

W3 90.00 76.07 90.00 

W4 89.99 90.00 90.00 

L1 1.20 1.20 1.03 

L2 0.99 0.85 0.88 
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L3 1.20 1.20 1.16  

L4 1.20 1.07 1.20 

100 samples and 100 iterations 

W1 89.68  54.33 60.71 

W2 90.00 20.00 90.00 

W3 90.00 90.00 70.04 

W4 89.99 90.00 90.00 

L1 1.20 1.20 1.07 

L2 0.99 0.35 0.87 

L3 1.20 0.35 1.20 

L4 1.20 1.03 1.20 
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Figure 5. Hspice simulation of the OTA: Power-Supply Rejection Ratio 

 

4. CONCLUSION 
In this paper, we introduced the efficient global optimization (EGO) algorithm and we proposed an EGO-based 

approach for the optimal design of analog circuits. Efficiency of the proposed sizing technique is showcased via 

the sizing of an CMOS OTA. Considered performances are its voltage gain, its common mode rejection ratio 

and its positive power-supply rejection ratio. For the sake of comparison with nowadays used ‘high 

performance’ sizing techniques, obtained results in terms of accuracy and execution time have compared with 

those obtained using a PSO-based in loop and an BSA-based inloop sizing techniques. Obtained results show 

that our approach offers similar accuracy while considerably reducing computing time. This proves that our 

approach is more interesting and can, without a doubt, be integrated within an CAD tool. 
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